INDIAN STATISTICAL INSTITUTE (BANGALORE) SEMESTRAL EXAMINATION II SEMESTER, 2009-2010 ANALYSIS IV INSTRUCTOR: K. RAMA MURTHY

Max. marks: 100

Time Limit: 3hrs

1. Recall that a subset A of a metric space X is said to be totally bounded if for every $\epsilon > 0$ we can find a finite number of open balls of radius ϵ that cover A. Show that A is totally bounded if and only if its closure is totally bounded. [15]

2. a) Prove or disprove:

0

The vector space spanned by $1, \sin x, \sin(2x), \dots$ is dense in C[0, 1]. [10]

2. b) Find the closed subspace of C[0, 1] spanned by $\sin(x), \sin(2x), \sin(3x), \dots$ [15]

3. Prove that
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin(nx)$$
 converges for all $x \in \mathbb{R}$. [25]

Hint: Let $a_n = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}$ and write the series in terms of a_n 's. 4. Prove that $\int_{\pi} \sin^3(a) \sin(202\pi) dx = 0$

4. Prove that
$$\int_{-\pi} \sin^3(x) \sin(203x) dx = 0.$$
 [10]

5. Let
$$\sum_{n=1}^{\infty} |a_n| < \infty$$
 and $\sum_{n=1}^{\infty} |b_n| < \infty$. Let $f(x) = \sum_{n=1}^{\infty} a_n e^{-inx}, g(x) =$

 $\sum_{n=1}^{\infty} b_n e^{inx}.$ Show without any computation that f * g = 0. [10]

6. Let
$$f$$
 be a continuous function on $[-\pi, \pi]$. Show that $\int_{-\pi}^{\pi} f(x) \sin(tx) dx \rightarrow as t \rightarrow \infty$. [15]